

How does pain get from here to here

- Every cell in your body is wired to send a signal to your brain
- The brain doesn't just receive information, but sends directions back out to every cell in your body
- Nerves act as the circuits that carry information to and from the brain

- The brain has to be understood in 7 ways
 - 1. Nerve cells: where genes and signals create chemicals that determine firing
 - 2. Synapses: the connections of nerve cells
 - 3. Anatomy: location of different brain parts
 - 4. Physiology: how the different parts work together

- The brain has to be understood in 7 ways
 - 5. Circuits: the electrical pathways in the brain connecting one region to another
 - Functional Regions: in any region of the brain nerve cells and their connection are responsible for several functions
 - 7. Neuroplasticity: What gets fired gets wired; what you don't use you lose; when you make 'em your break 'em, when you break 'em you make 'em

- Almost all nerves carrying information to the brain end before they reach it
- Signals are passed by electrical impulses down microscopic nerve filaments called axons
- The first place that these signals go is to nerve cell bodies just outside of the Central Nervous System

- The nerve cells respond to the electricity passing through them by making chemicals
- Some become little packets that transmit information at nerve endings in the spinal cord or the brain
- Some become receptors for receiving that information

- The place where this information is passed is a gap between nerve endings called a synapse
- It is made up of an incoming nerve ending, a space between and a receptive nerve ending
- Electrical signals are converted to chemical signals, which are received by chemical receptors and are then turned back to electrical signals

Brain Cells

Synapses: Each Brain Cell is Capable of About 10,000 Synapses

Synaptic Transmission:
Substance-P Transmits signal
NMDA calcium activity winds it up

When Information is passed at the synapse brain cells fire

- There are 100 billion nerve cells in the brain
- There are 1000 trillion connections (synapses) that pass information from one part of the brain to another
- Every week trillions of connections either form or disappear

- When you stub a toe, you cannot feel any pain until the signal gets to the thinking part of your brain
- The signal goes from your toe to synapses in the spinal cord and the non-thinking brain and is still not pain
- Only at the thinking brain, does it become pain

- Once the signal arrives at the thinking brain, 9 areas of it are responsible for how we experience pain
- In acute pain, the highly adaptive brain shuts off the signal when danger from injury passes or we rest the injured part of our bodies, long before healing is complete
- In persistent pain, the signal is amplified and is kept going long past any usefulness, becoming it's own disease process

Pain in the Brain

The Brain and Pain: Acute Pain

The Brain and Pain: Chronic Pain

Acute vs Chronic Persistent Pain: Brain Maps

Brain Pain Maps

- In chronic pain, the brain's pain map is expanded compared to acute pain
- When a brain map expands it steals nerve cells and their synapses from other functions in the area
- In pain, constant input to the brain leads to firing of nerve cells far longer lasting than the incoming pain signal-Long Term Potentiation

SHRINK THE PAIN MAP BY FLOODING THE BRAIN WITH:

Thoughts.....Images.....Sensations.....Memories.....Soothing Emotions.....Movement......Beliefs

Freeze, Emotional extremes

Connects emotion with

bodily sensation, Mirror

neurons, disgust

Scent Circuit

- Nasal mucosa to nerves that penetrate skull bone and synapse with olfactory track
- The next synapse is amygdala, then circuit traces the pain circuit
- Amygdala is the first place we perceive pain—sends signals via neurotransmitter, Substance P and use of Calcium channels to generate signal
- Peppermint blocks Substance P and calcium channels

Scent and Emotional Memory Circuit

Scent and Sensory Circuit

- Scent stimulates the Amygdala
- Insula responds to circuit by either setting off pleasure circuits or disgust
- Sensory areas of the brain are stimulated, selectively identifying the strongest sensation

Scent vs Pain

- The brain tends to identify the strongest sensation
- Other sensations are identified, but are pushed into the background
- This technique can be used to push pain to the background (Peppermint and cold receptors)